CHAPTER TWO
NEURAL NETWORKS ALGORITHMS
2.1 Overview
This Chapter presented a description of architectures and algorithms used to train neural networks. This chapter will explain the Model of a neuron and structures of neural networks including the single layer feedforward networks, multilayer feedforward networks, recurrent networks, and radial basis function networks. The sections below explains the artificial neural networks training and learning involved neural networks learning; supervised learning and unsupervised learning. Also this chapter discusses some advanced neural networks learning and problems using neural networks.
2.2 Models of a Neuron

A neuron is an information-processing unit that is fundamental to the operation of a neural network. Figure 2.1 shows the model for a neuron. We may identify three basic elements of the neuron model, as described here:

1. A set of synapses or connecting links, each of which is characterized by a weight or strength of its own. Specially, a signal xj at the input of synapse of j connected to neuron k is multiplied by the synaptic weight wkj. It is important to make a note of the manner in which the subscripts of the synaptic weight wkj are written. The first subscript refers to the neuron in question and the second subscript refers to the input end of the synapse to which the weight refers; the reverse of this notation is also used in the literature. The weight wkj is positive if the associated synapse is excitatory; it is negative if the synapse is inhibitory.

2. An adder for summing the input signals, weighted by the respective synapses of the neuron; the operations described here constitutes a liner combiner.

3. An activation function for limiting the amplitude of the output of a neuron. The activation function is also referred to in the literature as a squashing function in that it squashes (limits) the permissible amplitude range of the output signal to some finite value. Typically, the normalized amplitude range of the output of a neuron is written as the closed unit interval [0, 1] or alternatively [-1, 1].

The model of a neuron shown in Fig. 2.1 also includes an externally applied threshold (k that has the effect of lowering the net input of the activation function. On the other hand, the net input of the activation function may be increased by employing a bias term rather than a threshold; the bias is the negative of the threshold.

Figure 2.1 Nonlinear model of a neuron.
In mathematical terms, we may describe a neuron k by writing the following pair of equations:

[image: image1.wmf]j

p

j

kj

k

x

w

u

å

=

=

1

(2.1)

And

[image: image2.wmf])

(

k

k

k

u

y

q

j

-

=

(2.2)

Where x1, x2,…, xp are the input signals; wk1, wk2, …, wkp are the synaptic weights of neuron k; uk is the linear combiner output; (k is the threshold; ((() is the activation function; and yk is the output signal of the neuron. The use of threshold(k has the effect of applying an affine transformation to the output uk of the linear combiner in the model of Fig 2.2 as shown by

[image: image3.wmf]k

k

k

u

v

q

-

=

(2.3)

In particular, depending on whether the threshold (k is positive of negative, the relationship between the effective internal activity level or activation potential vk of neuron k and the linear combiner output uk is modified in the manner illustrated in Fig. 2.2. Note that as a result of this affine transformation, the graph of vk versus uk no longer pass through the origin.

Figure 2.2. Affine transformation produced by the presence of a threshold.

The (k is an external parameter of artificial neuron k. We may account for its presence as in Eq. (2.2). Equivalently, we may formulate the combination of Eqs. (2.1) and (2.2) as follows:

[image: image4.wmf]

 EMBED Equation.3 [image: image5.wmf]j

p

j

kj

k

x

w

v

å

=

=

0

(2.4)

and

[image: image6.wmf])

(

k

k

v

y

j

=

(2.5)

In Eq. (2.4) we have added a new synapse, whose input is

[image: image7.wmf]1

0

-

=

x

(2.6)

and whose weight is

[image: image8.wmf]k

k

w

q

=

0

(2.7)
We may therefore reformulate the model of neuron k as in Fig. 2.3a. In this figure, the effect of the threshold is represented by doing two things: (1) adding a new input signal fixed at –1, and (2) adding a new synaptic weight equal to the threshold (k. Alternatively, we may model the neuron as in Fig. 2.3b,

(a)

(b)

Figure 2.3. Two other nonlinear models of a neuron.

Where the combination of fixed input x0 = +1 and weight wk0 = bk accounts for the bias bk. Although the models in Fig. 2.1 and 2.3 are different in appearance, they are mathematically equivalent.

2.3 Neural Network Structures
The manner in which the neurons of a neural network are structured is intimately linked with the learning algorithm used to train the network. We may therefore speak of learning algorithms (rules) used in the design of neural networks as being structured.

In general, we may identify four different classes of network architectures:

2.3.1 Single-Layer Feedforward Networks

A layered neural network is a network of neurons organized in the form of layers. In the simplest form of a layered network, we just have an input layer of source nodes that projects onto an output layer of neurons (computation nodes), but not vice versa. In other words, this network is strictly of a feedforward type. It is illustrated in Fig. 2.4 for the case of four nodes in both the input and output layers. Such a network is called a single-layer network, with the designation "single layer" referring to the output layer of computation nodes (neurons). In other words, we do not count the input layer of source nodes, because no computation is performed there.

Figure 2.4. Feedforward network with a single layer of neurons

Algorithm

The perceptron can be trained by adjusting the weights of the inputs with Supervised Learning. In this learning technique, the patterns to be recognised are known in advance, and a training set of input values are already classified with the desired output. Before commencing, the weights are initialised with random values. Each training set is then presented for the perceptron in turn. For every input set the output from the perceptron is compared to the desired output. If the output is correct, no weights are altered. However, if the output is wrong, we have to distinguish which of the patterns we would like the result to be, and adjust the weights on the currently active inputs towards the desired result.

Perceptron Convergence Theorem:

The perceptron algorithm finds a linear discriminant function in finite iterations if the training set is linearly separable. [Rosenblatt 1962] [2].

The learning algorithm for the perceptron can be improved in several ways to improve efficiency, but the algorithm lacks usefulness as long as it is only possible to classify linear separable patterns.
2.3.2 Multilayer Feedforward Networks

The second class of a feedforward neural network distinguishes itself by the presence of one or more hidden layers, whose computation nodes are correspondingly called hidden neurons or hidden units. The function of the hidden neurons is to intervene between the external input and the network output. By adding one or more hidden layers, the network acquires a global perspective despite its local connectivity by virtue of the extra set of synaptic connections and the extra dimension of neural interactions (Churchland and Sejnowski, 1992) [10]. The ability of hidden neurons to extract higher-order statistics is particularly valuable when the size of the input layer is large.

The source nodes in the input layer of the network supply respectively elements of the activation pattern (input vector), which constitute the input signals applied to the neurons (computation nodes) in the second layer (i.e., the first hidden layer). The output signals of the second layer are used as inputs to the third layer, and so on for the rest of the network. Typically, the neurons in each layer of the network have as their inputs the output signals of the preceding layer only. The set of output signals of the neurons in the output (final) layer of the network constitutes the overall response of the network to the activation pattern supplied by the source nodes in the input (first) layer. The architectural graph of Fig. 2.5 illustrates the layout of a multilayer feedforward neural network for the case of a single hidden layer. For brevity the network of Fig. 2.5 is referred to as a 4-4-2 network in that it has 4 source nodes, 4 hidden nodes, and 2 output nodes. As another example, a feedforward network with p source nodes, h1 neurons in the first hidden layer, h2 neurons in the second layer, and q neurons in the output layer, say, is referred to as a p-h1-h2-q network.

Figure 2.5. Fully connected feedforward network with one hidden layer.

The neural network of Fig 2.5 is said to be fully connected in the sense that every node in each layer of the network is connected to every other node in the adjacent forward layer. If, however, some of the communication links (synaptic connections) are missing from the network, we say that the network is partially connected. A form of partially connected multilayer feedforward network of particular interest is a locally connected network. An example of such a network with a single hidden layer is presented in Fig. 2.6. Each neuron in the hidden layer is connected to a local (partial) set of source nodes that lies in its immediate neighborhood; such a set of localized nodes feeding a neuron is said to constitute the receptive field of the neuron. Likewise, each neuron in the output layer is connected to a local set of hidden neurons. The network of Fig. 2.6 has the same number of source nodes, hidden nodes, and output nodes as that of Fig.2.1. However, comparing these two networks, we see that the locally connected network of Fig. 2.6 has a specialized structure.

Figure 2.6. Partially connected feedforward network.

Algorithm

The threshold function of the units is modified to be a function that is continuous derivative, the Sigmoid Function. The use of the Sigmoid function gives the extra information necessary for the network to implement the back-propagation training algorithm. Back-propagation works by finding the squared error (the Error function) of the entire network, and then calculating the error term for each of the output and hidden units by using the output from the previous neuron layer. The weights of the entire network are then adjusted with dependence on the error term and the given learning rate. Training continues on the training set until the error function reaches a certain minimum. If the minimum is set too high, the network might not be able to correctly classify a pattern. But if the minimum is set too low, the network will have difficulties in classifying noisy patterns.
2.3.3 Recurrent Networks

A recurrent neural network distinguishes itself from a feedforward neural network in that it has at least one feedforward loop. For example, a recurrent network may consist of a single layer of neurons with each neuron feeding its output signal back to the inputs of all the other neurons, as illustrated in the architecture graph of Fig. 2.7. In the structure depicted in this figure there are no self-feedback loops in the network; self-feedback refers to a situation where the output of a neuron is fed back to its own input. The presence of feedback loops has a profound impact on the learning capability of the network, and on its performance. Moreover, the feedback loops involve the use of particular branches composed of unit-delay elements (denoted by z-1), which result in a nonlinear dynamical behavior by virtue of the nonlinear nature of the neurons. Nonlinear dynamics plays a key role in the storage function of a recurrent network.

Figure 2.7. Recurrent network with hidden neurons.

2.3.4 Radial Basis Function Networks
The radial basis function (RBF) network constitutes another way of implementing arbitrary input/output mappings. The most significant difference between the MLP and RBF lies in the processing element nonlinearity. While the processing element in the MLP responds to the full input space, the processing element in the RBF is local, normally a Gaussian kernel in the input space. Hence, it only responds to inputs that are close to its center; i.e., it has basically a local response.
[image: image9.jpg]

Figure 2.8. Radial Basis Function (RBF) network.
The RBF network is also a layered net with the hidden layer built from Gaussian kernels and a linear (or nonlinear) output layer (Fig. 2.8). Training of the RBF network is done normally in two stages [Haykin, 1994] [11]:

First, the centers xi are adaptively placed in the input space using competitive learning or k means clustering [Bishop, 1995] [12], which are unsupervised procedures. Competitive learning is explained later in the chapter. The variances of each Gaussian are chosen as a percentage (30 to 50%) to the distance to the nearest center. The goal is to cover adequately the input data distribution. Once the RBF is located, the second layer weights wi are trained using the LMS procedure.

RBF networks are easy to work with, they train very fast, and they have shown good properties both for function approximation as classification. The problem is that they require lots of Gaussian kernels in high-dimensional spaces.
2.4 Training an Artificial Neural Network

Once a network has been structured for a particular application, that network is ready to be trained. To start this process the initial weights are chosen randomly. Then, the training, or learning, begins.

There are two approaches to training - supervised and unsupervised. Supervised training involves a mechanism of providing the network with the desired output either by manually "grading" the network's performance or by providing the desired outputs with the inputs. Unsupervised training is where the network has to make sense of the inputs without outside help.

The vast bulk of networks utilize supervised training. Unsupervised training is used to perform some initial characterization on inputs. However, in the full blown sense of being truly self learning, it is still just a shining promise that is not fully understood, does not completely work, and thus is relegated to the lab.

2.4.1 Supervised Training

In supervised training, both the inputs and the outputs are provided. The network then processes the inputs and compares its resulting outputs against the desired outputs. Errors are then propagated back through the system, causing the system to adjust the weights which control the network.

This process occurs over and over as the weights are continually tweaked. The set of data which enables the training is called the "training set." During the training of a network the same set of data is processed many times as the connection weights are ever refined.

The current commercial network development packages provide tools to monitor how well an artificial neural network is converging on the ability to predict the right answer. These tools allow the training process to go on for days, stopping only when the system reaches some statistically desired point, or accuracy. However, some networks never learn. This could be because the input data does not contain the specific information from which the desired output is derived. Networks also don't converge if there is not enough data to enable complete learning. Ideally, there should be enough data so that part of the data can be held back as a test. Many layered networks with multiple nodes are capable of memorizing data. To monitor the network to determine if the system is simply memorizing its data in some nonsignificant way, supervised training needs to hold back a set of data to be used to test the system after it has undergone its training. (Note: memorization is avoided by not having too many processing elements.).

If a network simply can't solve the problem, the designer then has to review the input and outputs, the number of layers, the number of elements per layer, the connections between the layers, the summation, transfer, and training functions, and even the initial weights themselves. Those changes required to create a successful network constitute a process wherein the "art" of neural networking occurs.

Another part of the designer's creativity governs the rules of training. There are many laws (algorithms) used to implement the adaptive feedback required to adjust the weights during training. The most common technique is backward-error propagation, more commonly known as back-propagation. These various learning techniques are explored in greater depth later in this report.

Yet, training is not just a technique. It involves a "feel," and conscious analysis, to insure that the network is not overtrained. Initially, an artificial neural network configures itself with the general statistical trends of the data. Later, it continues to "learn" about other aspects of the data which may be spurious from a general viewpoint.

When finally the system has been correctly trained, and no further learning is needed, the weights can, if desired, be "frozen." In some systems this finalized network is then turned into hardware so that it can be fast. Other systems don't lock themselves in but continue to learn while in production use.

2.4.2 Unsupervised Training
The other type of training is called unsupervised training. In unsupervised training, the network is provided with inputs but not with desired outputs. The system itself must then decide what features it will use to group the input data. This is often referred to as self-organization or adaption.

At the present time, unsupervised learning is not well understood. This adaption to the environment is the promise which would enable science fiction types of robots to continually learn on their own as they encounter new situations and new environments. Life is filled with situations where exact training sets do not exist. Some of these situations involve military action where new combat techniques and new weapons might be encountered. Because of this unexpected aspect to life and the human desire to be prepared, there continues to be research into, and hope for, this field. Yet, at the present time, the vast bulk of neural network work is in systems with supervised learning. Supervised learning is achieving results.

One of the leading researchers into unsupervised learning is Tuevo Kohonen [13], an electrical engineer at the Helsinki University of Technology. He has developed a self-organizing network, sometimes called an autoassociator that learns without the benefit of knowing the right answer. It is an unusual looking network in that it contains one single layer with many connections. The weights for those connections have to be initialized and the inputs have to be normalized. The neurons are set up to compete in a winner-take-all fashion.

Kohonen continues his research into networks that are structured differently than standard, feedforward, back-propagation approaches. Kohonen's work deals with the grouping of neurons into fields. Neurons within a field are "topologically ordered." Topology is a branch of mathematics that studies how to map from one space to another without changing the geometric configuration. The three-dimensional groupings often found in mammalian brains are an example of topological ordering. Kohonen has pointed out that the lack of topology in neural network models make today's neural networks just simple abstractions of the real neural networks within the brain. As this research continues, more powerful self learning networks may become possible. But currently, this field remains one that is still in the laboratory.
2.5 Teaching an Artificial Neural Network

2.5.1 Supervised Learning

The vast majority of artificial neural network solutions have been trained with supervision. In this mode, the actual output of a neural network is compared to the desired output. Weights, which are usually randomly set to begin with, are then adjusted by the network so that the next iteration, or cycle, will produce a closer match between the desired and the actual output. The learning method tries to minimize the current errors of all processing elements. This global error reduction is created over time by continuously modifying the input weights until an acceptable network accuracy is reached.

With supervised learning, the artificial neural network must be trained before it becomes useful. Training consists of presenting input and output data to the network. This data is often referred to as the training set. That is, for each input set provided to the system, the corresponding desired output set is provided as well. In most applications, actual data must be used. This training phase can consume a lot of time. In prototype systems, with inadequate processing power, learning can take weeks. This training is considered complete when the neural network reaches a user defined performance level. This level signifies that the network has achieved the desired statistical accuracy as it produces the required outputs for a given sequence of inputs. When no further learning is necessary, the weights are typically frozen for the application. Some network types allow continual training, at a much slower rate, while in operation. This helps a network to adapt to gradually changing conditions.
Training sets need to be fairly large to contain all the needed information if the network is to learn the features and relationships that are important. Not only do the sets have to be large but the training sessions must include a wide variety of data. If the network is trained just one example at a time, all the weights set so meticulously for one fact could be drastically altered in learning the next fact. The previous facts could be forgotten in learning something new. As a result, the system has to learn everything together, finding the best weight settings for the total set of facts. For example, in teaching a system to recognize pixel patterns for the ten digits, if there were twenty examples of each digit, all the examples of the digit seven should not be presented at the same time.

How the input and output data is represented, or encoded, is a major component to successfully instructing a network. Artificial networks only deal with numeric input data. Therefore, the raw data must often be converted from the external environment. Additionally, it is usually necessary to scale the data, or normalize it to the network's paradigm. This pre-processing of real-world stimuli, be they cameras or sensors, into machine readable format is already common for standard computers. Many conditioning techniques which directly apply to artificial neural network implementations are readily available. It is then up to the network designer to find the best data format and matching network architecture for a given application.

After a supervised network performs well on the training data, then it is important to see what it can do with data it has not seen before. If a system does not give reasonable outputs for this test set, the training period is not over. Indeed, this testing is critical to insure that the network has not simply memorized a given set of data but has learned the general patterns involved within an application.

2.5.2 Unsupervised Learning.

Unsupervised learning is the great promise of the future. It shouts that computers could someday learn on their own in a true robotic sense. Currently, this learning method is limited to networks known as self-organizing maps. These kinds of networks are not in widespread use. They are basically an academic novelty. Yet, they have shown they can provide a solution in a few instances, proving that their promise is not groundless. They have been proven to be more effective than many algorithmic techniques for numerical aerodynamic flow calculations. They are also being used in the lab where they are split into a front-end network that recognizes short, phoneme-like fragments of speech which are then passed on to a backend network. The second artificial network recognizes these strings of fragments as words.

This promising field of unsupervised learning is sometimes called self-supervised learning. These networks use no external influences to adjust their weights. Instead, they internally monitor their performance. These networks look for regularities or trends in the input signals, and makes adaptations according to the function of the network. Even without being told whether it's right or wrong, the network still must have some information about how to organize itself. This information is built into the network topology and learning rules.

An unsupervised learning algorithm might emphasize cooperation among clusters of processing elements. In such a scheme, the clusters would work together. If some external input activated any node in the cluster, the cluster's activity as a whole could be increased. Likewise, if external input to nodes in the cluster was decreased, that could have an inhibitory effect on the entire cluster.

Competition between processing elements could also form a basis for learning. Training of competitive clusters could amplify the responses of specific groups to specific stimuli. As such, it would associate those groups with each other and with a specific appropriate response. Normally, when competition for learning is in effect, only the weights belonging to the winning processing element will be updated.

At the present state of the art, unsupervised learning is not well understood and is still the subject of research. This research is currently of interest to the government because military situations often do not have a data set available to train a network until a conflict arises.

2.5.3 Learning Rates

The rate at which ANNs learn depends upon several controllable factors. In selecting the approach there are many trade-offs to consider. Obviously, a slower rate means a lot more time is spent in accomplishing the off-line learning to produce an adequately trained system. With the faster learning rates, however, the network may not be able to make the fine discriminations possible with a system that learns more slowly. Researchers are working on producing the best of both worlds.

Generally, several factors besides time have to be considered when discussing the off-line training task, which is often described as "tiresome." Network complexity, size, paradigm selection, architecture, type of learning rule or rules employed, and desired accuracy must all be considered. These factors play a significant role in determining how long it will take to train a network. Changing any one of these factors may either extend the training time to an unreasonable length or even result in an unacceptable accuracy.

Most learning functions have some provision for a learning rate, or learning constant. Usually this term is positive and between zero and one. If the learning rate is greater than one, it is easy for the learning algorithm to overshoot in correcting the weights, and the network will oscillate. Small values of the learning rate will not correct the current error as quickly, but if small steps are taken in correcting errors, there is a good chance of arriving at the best minimum convergence.

2.5.4 Learning Laws

Many learning laws are in common use. Most of these laws are some sort of variation of the best known and oldest learning law, Hebb's Rule. Research into different learning functions continues as new ideas routinely show up in trade publications. Some researchers have the modeling of biological learning as their main objective. Others are experimenting with adaptations of their perceptions of how nature handles learning. Either way, man's understanding of how neural processing actually works is very limited. Learning is certainly more complex than the simplifications represented by the learning laws currently developed. A few of the major laws are presented as examples.

Hebb's Rule: The first, and undoubtedly the best known, learning rule as introduced by Donald Hebb. The description appeared in his book T h e Organization of Behavior in 1949 [14]. His basic rule is: If a neuron receives an input from another neuron, and if both are highly active (mathematically have the same sign), the weight between the neurons should be strengthened.

Hopfield Law: It is similar to Hebb's rule with the exception that it specifies the magnitude of the strengthening or weakening. It states, "If the desired output and the input are both active or both inactive, increment the connection weight by the learning rate, otherwise decrement the weight by the learning rate." [15].
The Delta Rule: This rule is a further variation of Hebb's Rule. It is one of the most commonly used. This rule is based on the simple idea of continuously modifying the strengths of the input connections to reduce the difference (the delta) between the desired output value and the actual output of a processing element. This rule changes the synaptic weights in the way that minimizes the mean squared error of the network. This rule is also referred to as the Widrow-Hoff Learning Rule and the Least Mean Square (LMS) Learning Rule.

The way that the Delta Rule works is that the delta error in the output layer is transformed by the derivative of the transfer function and is then used in the previous neural layer to adjust input connection weights. In other words, this error is back-propagated into previous layers one layer at a time. The process of back-propagating the network errors continues until the first layer is reached. The network type called Feedforward, Back-propagation derives its name from this method of computing the error term.

When using the delta rule, it is important to ensure that the input data set is well randomized. Well ordered or structured presentation of the training set can lead to a network which can not converge to the desired accuracy. If that happens, then the network is incapable of learning the problem.

The Gradient Descent Rule: This rule is similar to the Delta Rule in that the derivative of the transfer function is still used to modify the delta error before it is applied to the connection weights. Here, however, an additional proportional constant tied to the learning rate is appended to the final modifying factor acting upon the weight. This rule is commonly used, even though it converges to a point of stability very slowly. It has been shown that different learning rates for different layers of a network help the learning process converge faster. In these tests, the learning rates for those layers close to the output were set lower than those layers near the input. This is especially important for applications where the input data is not derived from a strong underlying model.

Kohonen's Learning Law: This procedure, developed by Teuvo Kohonen, was inspired by learning in biological systems. In this procedure, the processing elements compete for the opportunity to learn, or update their weights. The processing element with the largest output is declared the winner and has the capability of inhibiting its competitors as well as exciting its neighbors. Only the winner is permitted an output, and only the winner plus its neighbors are allowed to adjust their connection weights.

Further, the size of the neighborhood can vary during the training period. The usual paradigm is to start with a larger definition of the neighborhood, and narrow in as the training process proceeds. Because the winning element is defined as the one that has the closest match to the input pattern, Kohonen networks model the distribution of the inputs. This is good for statistical or topological modeling of the data and is sometimes referred to as self-organizing maps or self-organizing topologies.
2.6 Advanced Neural Networks
Many advanced algorithms have been invented since the first simple neural network. Some algorithms are based on the same assumptions or learning techniques as the SLP and the MLP. A very different approach however was taken by Kohonen, in his research in self-organising networks.

2.6.1 Kohonen Self-Organising Networks
The Kohonen self-organising networks have a two-layer topology. The first layer is the input layer, the second layer is itself a network in a plane. Every unit in the input layer is connected to all the nodes in the grid in the second layer. Furthermore the units in the grid function as the output nodes.

[image: image10.png]

Input nodes

Figure 2.9 The Kohonen Topology
The nodes in the grid are only sparsely connected. Here each node has four immediate neighbours.

Algorithm

The network (the units in the grid) is initialised with small random values. A neighbourhood radius is set to a large value. The input is presented and the Euclidean distance between the input and each output node is calculated. The node with the minimum distance is selected, and this node, together with its neighbors within the neighbourhood radius, will have their weights modified to increase similarity to the input. The neighborhood radius decreases over time to let areas of the network be specialised to a pattern.

The algorithm results in a network where groups of nodes respond to each class thus creating a map of the found classes.

The big difference in the learning algorithm, compared with the MLP, is that the Kohonen self-organising net uses unsupervised learning. But after the learning period when the network has mapped the test patterns, it is the operators responsibility to label the different patterns accordingly.

2.6.2 Hopfield Nets
The Hopfield net is a fully connected, symmetrically weighted network where each node functions both as input and output node. The idea is that, depending on the weights, some states are unstable and the net will iterate a number of times to settle in a stable state.

The net is initialised to have a stable state with some known patterns. Then, the function of the network is to receive a noisy or unclassified pattern as input and produce the known, learnt pattern as output.

[image: image11.png]

Figure 2.10. Hopfield Topology

Algorithm

The energy function for the network is minimised for each of the patterns in the training set, by adjusting the connection weights. An unknown pattern is presented for the network. The network iterates until convergence. The Hopfield net can be visualised by means of the Energy Landscape, where the hollows represent the stored patterns. In the iterations of the Hopfield net the energy will be gradually minimised until a steady state in one of the basins is reached.

[image: image12.png]

Figure 2.11. Energy Landscape

2.7 Problems using Neural Networks
2.7.1 Local Minimum
All the NN in this paper are described in their basic algorithm. Several suggestions for improvements and modifications have been made. One of the well-known problems in the MLP is the local minimum: The net does not settle in one of the learned minima but instead in a local minimum in the Energy landscape
Approaches to avoid local minimum:

· The gain term in the weight adaption function can be lowered progressively as the network iterates. This would at first let the differences in weights and energy be large, and then hopefully when the network is approaching the right solution, the steps would be smaller. The tradeoff is when the gain term has decreased the network will take a longer time to converge to right solution.
· A local minimum can be caused by a bad internal representation of the patterns. This can be aided by the adding more internal nodes to the network.

· An extra term can be added to the weight adaption: the Momentum term. The Momentum term should let the weight change be large if the current change in energy is large.
· The network gradient descent can be disrupted by adding random noise to ensure sure the sytem will take unequal steps toward the solution. This solution has the advantage, that it requires no extra computation time.
A similar problem is known in the Hopfield Net as metastable states. That is when the network settles in a state that is not represented in the stored patterns. One way to minimise this is by adjusting the number of nodes in the network (N) to the number of patterns to store, so that the number of patterns does not exceed 0.15N. Another solution is to add a probabilistic update rule to the Hopfield network. This is known as the Boltzman machine.

2.7.2 Practical problems

There are some practical problems applying neural networks to applications.

It is not possible to know in advance the ideal network for an application. So every time a NN is to be built in an application, it requires tests and experiments with different network settings or topologies to find a solution that performs well on the given application. This is a problem because most NN requires a long training period – many iterations of the same pattern set. And even after many iterations there is no way other that testing to see whether the network is efficiently mapping the training sets. A solution for this might be to adapt newer NN technologies such as the bumptree which need only one run through the training set to adjust all weights in the network. The most commonly used network still seems to be the MLP and the RBF3 even though alternatives exist that can drastically shorten processing time.

In general most NN include complex computation, which is time consuming. Some of these computations could gain efficiency if they were to be implemented on a parrallel processing system, but the hardware implementation raises new problems of physical limits and the NN need for changeability.

2.8 Summary
As we have discussed neural networks classified according to their learning processes into two types, supervised learning and unsupervised learning. Also this chapter discussed the various types of neural networks structures and algorithms. The most commonly used neural network configurations known as multilayer perceptron (MLP) are described. Other structures discussed in this chapter include recurrent (feedback) neural networks and radial basis function (RBF) network. Also we have explained a brief description of Kohenon self-orginising networks and Hopfield networks. Finally we have discussed the problems using neural networks including the local minimum and practical problems.
Output layer of neurons

Input layer of source nodes

Hidden layer of neurons

Output layer of neurons

Input layer of source nodes

Hidden layer of neurons

Output layer of neurons

Input layer of source nodes

z-1

z-1

z-1

z-1

Outputs

Inputs

uk

(k

Threshold

Output

yk

Activation

function

Summing

junction

Synaptic

weights

Input

signals

Xp

X2

X1

((()

(

Wkp

Wk2

Wk1

0

Total internal activity level, vk

Threshold (k < 0

(k = 0

 (k > 0

Linear combiner’s output, uk

Wk1

Wk2

Wkp

(

((()

X1

X2

Xp

Input

signals

Synaptic weights

(including threshold)

Summing

junction

Activation

function

Output

yk

Wk0

Fixed input X0 = -1

Wk0 = (k (threshold)

uk

Wk1

Wk2

Wkp

(

((()

X1

X2

Xp

Input

signals

Synaptic weights

(including threshold)

Summing

junction

Activation

function

Output

yk

Wk0

Fixed input X0 = +1

Wk0 = bk (bias)

uk

PAGE
43

_1002802436.unknown

_1002802495.unknown

_1002802543.unknown

_1002802579.unknown

_1002802481.unknown

_1002801665.unknown

_1002802070.unknown

_1002801559.unknown

